To Design a Small Pneumatic Actuator Driven Parallel Link Mechanism for Shoulder Prostheses for Daily Living Use
نویسندگان
چکیده
Only in Japan, there are about 82,000 upper limb amputees (Ministry of Health, Labour and Welfare, 2005). Using upper limb prostheses could restore the function for them, thus improve significantly the quality of their activities of daily living [ADL]. Compared with below-elbow prostheses, shoulder prostheses are left behind in their development, due to high degrees of freedom [DOF] required, which demands a large number of actuators, thus denotes a large size and a heavy weight, and complicated control mechanism. Recently, there is a certain body of research on developing robotic devices that could be used as prostheses for shoulder amputees (Jacobson et al., 1982; Motion Control, Inc., 20062011; The Johns Hopkins University Applied Physics Laboratory [APL], 2011; Troncossi et al., 2005, 2009a, 2009b). These research efforts have led to artificial prostheses with high functionality and performance. For example, the prosthetic arm of Defense Advanced Research Projects Agency and APL, has 25 DOFs, individual finger movements, dexterity that approaches that of the human limb, natural control, sensory feedback, and a number of small wireless devices that can be surgically implanted (or injected) to allow access to intramuscular signals(APL, 2011). The Utah Arm 3, a modification of the previous Utah Arm that has been the premier myoelectric arm for above elbow amputees, has two microcontrollers that are programmed for the hand and elbow, accordingly, allowing separate inputs and hence simultaneous control of both, and that is, the wearer can operate the hand and elbow concurrently for natural function (Jacobson et al., 1982; Motion Control, Inc., 2006-2011). The hybrid electric prosthesis for single arm amputee of Tokyo Denki University possesses a ball joint of 3 DOFs in humeral articulation. Patient operates the prosthesis to optional point by pressing a switch with the other healthy limb to free the joint, and releases to fix and hold the prosthetic arm stably (Nasu et al., 2001). Moreover, the electromechanical shoulder articulation with 2 DOFs for upper-limb prosthesis that has two actuated joints embedded harmonic drives, an inverted slider crank mechanism, and ball screw, has been developed (Troncossi et al., 2005, 2009a, 2009b). These prostheses have the following characteristics: they are more or less anthropomorphic, basically supported by metal frames or parts, driven by electric motors, therefore, many of them seem to be not suitable for the daily living use: they are not light weight, not convenient, with a bad portability, and lack of backdrivability which could contribute to the safety use in daily living.
منابع مشابه
Optimization-Based Design of a Small Pneumatic-Actuator-Driven Parallel Mechanism for a Shoulder Prosthetic Arm with Statics and Spatial Accessibility Evaluation
Human arms undertake most tasks in the activities of daily living (ADLs). When designing shoulder prostheses for high‐level upper‐limb amputees, we should consider not only how to realize high degrees of freedom under weight and shape constraints but also the user’s individual task space in daily life. An appropriate mechanical structure that can make full use of state...
متن کاملDesigning and testing lightweight shoulder prostheses with hybrid actuators for movements involved in typical activities of daily living and impact absorption
Unlike forearm amputees, transhumeral amputees have residual stumps that are too small to provide a sufficient range of operation for their prosthetic parts to perform usual activities of daily living. Furthermore, it is difficult for small residual stumps to provide sufficient impact absorption for safe manipulation in daily living, as intact arms do. Therefore, substitution of upper limb func...
متن کاملPneumatic Soft Actuator for Human Assist Technology
In the coming advanced age society, an innovative technology to assist the activities of daily living of elderly and disabled people and the heavy work in nursing is desired. To develop such a technology, an actuator safe and friendly for human is required. It should be small, lightweight and has to provide a proper softness. We call such an actuator soft actuator. A pneumatic rubber artificial...
متن کاملMistake Proofing Cam Mechanism Through Six-sigma Process: Case Study on Clothes Printing Machines
Controlling the occurrence of defects is a major challenge for manufacturing organizations that are seeking to enhance their competitive position in today’s global market. This paper considers the process of screen-printing T-shirts using hydraulic and pneumatic printing machines. Several defects in the output of this printing process have been observed, especially with multi colors printing as...
متن کاملDesign principle based on maximum output force profile for a musculoskeletal robot
Purpose – This paper focuses on an engineering application of the vertebrate musculoskeletal system. The musculoskeletal system has unique mechanisms such as bi-articular muscle, antagonistic muscle pairs and muscle-tendon elasticity. The “Artificial Musculoskeletal System” is achieved through the use of the pneumatic artificial muscles. The study provides a novel method to describe the force p...
متن کامل